

dhcpcanon - DHCP anonymity profile

[image: PyPI] [https://pypi.python.org/pypi/dhcpcanon] [image: Build Status] [https://www.travis-ci.org/juga0/dhcpcanon] [image: Coverage Status] [https://coveralls.io/github/juga0/dhcpcanon?branch=master] [image: Documentation Status] [http://dhcpcanon.readthedocs.io/en/latest/?badge=latest] [image: CII Best Practices] [https://bestpractices.coreinfrastructure.org/projects/1020]

DHCP client disclosing less identifying information.

Python implementation of the DHCP Anonymity Profiles RFC 7844 [https://tools.ietf.org/html/rfc7844.html]
designed for users that wish to remain anonymous to the visited network
minimizing disclosure of identifying information.

Technologies

This implementation uses the Python
Scapy Automata [https://www.secdev.org/projects/scapy/doc/advanced_usage.html#automata]

What is the Anonymity Profile?

As the [RFC 7844 [https://tools.ietf.org/html/rfc7844.html]] stats:

Some DHCP options carry unique identifiers. These identifiers can
enable device tracking even if the device administrator takes care of
randomizing other potential identifications like link-layer addresses
or IPv6 addresses. The anonymity profiles are designed for clients
that wish to remain anonymous to the visited network. The profiles
provide guidelines on the composition of DHCP or DHCPv6 messages,
designed to minimize disclosure of identifying information.

What is DHCP?

	From Wikipedia [https://en.wikipedia.org/wiki/DHCP]:

	The Dynamic Host Configuration Protocol (DHCP) is a standardized
network protocol [https://en.wikipedia.org/wiki/Network_protocol]
used on Internet
Protocol [https://en.wikipedia.org/wiki/Internet_Protocol] (IP)
networks. The DHCP is controlled by a DHCP server that dynamically
distributes network configuration parameters, such as IP
addresses [https://en.wikipedia.org/wiki/IP_address], for interfaces
and services. A
router [https://en.wikipedia.org/wiki/Router_%28computing%29] or a
residential
gateway [https://en.wikipedia.org/wiki/Residential_gateway] can be
enabled to act as a DHCP server. A DHCP server enables computers to
request IP addresses and networking parameters automatically, reducing
the need for a network
administrator [https://en.wikipedia.org/wiki/Network_administrator]
or a user to configure these settings manually. In the absence of a DHCP
server, each computer or other device (eg., a printer) on the network
needs to be statically (ie., manually) assigned to an IP address.

Installation

See Install dhcpcanon

Download

See Download dhcpcanon

Bugs and features

If you wish to signal a bug or report a feature request, please fill-in
an issue on the dhcpcanon issue tracker [https://github.com/juga0/dhcpcanon/issues].

Current status

Minimal version implemented, still to be improved.

See TODO

Documentation for developers

Contributing to dhcpcanon

State of the Art

RFC7844 DHCPv4 restricted version summary, questions and dhcpcanon specification

Summary of questions regarding the RFCs and the implementations

Message types and options details in all layers

Installation and running cases

Minimising dhcpcanon privileges

dhcpcanon integration with network managers

dhcpcanon Python API Reference

dhcpcanon diagrams

Recommended documentation not included in this repository:

Related RFCs

RFC7844 comments and summary

Main Website [http://dhcpap.github.io]

License

dhcpcanon is copyright 2016, 2017 by juga <juga at riseup dot net>,
and is licensed under the terms of the MIT license.

Acknowledgments

To all the persons that have given suggestions and comments about this
implementation, the authors of the RFC 7844 [https://tools.ietf.org/html/rfc7844.html],
the Prototype Fund Project [https://prototypefund.de] of the
Open Knowledge Foundation Germany [https://okfn.de/] and the
Federal Ministry of Education and Research [https://www.bmbf.de/]
for funding partially this project.

Contents:

	Install dhcpcanon

	Installation from source code in Debian/Ubuntu
	for advanced users

	Installation with pip

	Installation for developers

	Download dhcpcanon

	Running dhcpcanon

	Installation and running cases
	system files

	run cases

	install from

	TODO

	Contributing to dhcpcanon
	General contribution guidelines

	Code style guide

	Docstring conventions

	Contribution workflow

	Reporting a Vulnerability

	State of the Art
	ISC-DHCP

	isc-dhcp-client

	network-manager built-in

	systemd-networkd

	udhcpc

	Gnome Network Manager

	wicd

	python-isc-dhcp-leases

	pydhcplib

	pydhcpd

	staticdhcpd

	dhquery

	dhcpy6d

	dhcpscapy

	RFC7844 DHCPv4 restricted version summary, questions and dhcpcanon specification
	Message types

	Message Options

	Operational considerations

	Not specified in RFC7844, but in RFC2131

	Summary of questions regarding the RFCs and the implementations
	Message Options

	Not specified in RFC7844, but in RFC2131

	Not specified in any RFC

	Message types and options details in all layers
	DHCPDISCOVER

	DHCPREQUEST

	DHCPDECLINE

	DHCPRELEASE

	DHCPINFORM

	Minimising dhcpcanon privileges
	Wrapper to inherit capabilities

	dhcpcanon integration with network managers
	Integration with Gnome Network Manager

	nm notes

	Integration with wicd

	dhcpcanon Python API Reference
	dhcpcapfsm module

	dhcpcap module

	dhcpcaplease module

	clientscript module

	timers module

	dhcpcaputils module

	constants module

	conflog module

	dhcpcanon diagrams
	Finite State Machine diagram

	Classes diagram

	Packages diagram

	Calls diagram

	Organigram

Indices and tables

	Index

	Module Index

	Search Page

Install dhcpcanon

The recommended way to install dhcpcanon is with your package source
distribution, as it will also install other system files.

Currently is availabe for Debian unstable/testing.
It can be installed with a package manager or in command line:

sudo apt install dhcpcanon

The main script will be installed in /sbin/dhcpcanon, a systemd service
will be enabled and run by default, so there is no need to run anything manually.

Important: when running dhcpcanon the hardware address
(MAC [https://en.wikipedia.org/wiki/MAC_address]) should be randomized.
You can use macchanger [https://github.com/alobbs/macchanger],
macouflage [https://github.com/subgraph/macouflage] or other.

Installation from source code in Debian/Ubuntu

In case you would like to have a newer version or it is not packaged for your
distribution, you can install it from the source code.

Install system dependencies, in Debian/Ubuntu:

sudo apt install python3-dev

Obtain the source code:

git clone https://github.com/juga0/dhcpcanon/

Install dhcpcanon and system files:

sudo ./install.sh

for advanced users

Follow the two first steps in the previous paragraph.

To install dhcpcanon and the systemd service:

sudo make install WITH_SYSTEMD=true

In Debian this will install all the required files under /usr/local.
WITH_SYSTEMD will install a systemd service and enable it, to run it:

systemctl start dhcpcanon

It’s possible to also install support for udev:

sudo apt install sudo make install WITH_SYSTEMD=true
sudo make install WITH_SYSTEMD=true WITH_SYSTEMD_UDEV=true

And apparmor profile:

sudo apt install apparmor
sudo make install WITH_APPARMOR=true

In the case that you would like to install without root privileges,
you can install it without the systemd service and you can specify
an alternative location, for instance:

make --prefix=/home/user/.local install

Note however that without systemd dhcpcanon will need to be run with root
privileges, while the systemd service drop dhcpcanon root privileges and
only keeps the required network capabilities.

You would also need to install
resolvconf-admin [https://github.com/dkg/resolvoconf-admin]
to be able to run it as non root user and set up DNS servers provided by the DHCP server.
It will be possible to set up DNS servers with systemd too soon.

An alternative to do not run dhcpcanon with root privileges nor systemd,
is to use ambient-rs wrapper [https://github.com/infinity0/ambient-rs]
and run:

RUST_BACKTRACE=1 ./target/debug/ambient \
-c NET_RAW,NET_ADMIN,NET_BIND_SERVICE \
/usr/bin/python3 -m dhcpcanon.dhcpcanon -v

Installation with pip

The pip package does not install either system files and it can be installed
without root, but it still needs to be run as root, as commented in the last
section.:

pip3 install dhcpcanon

In Debian this will install the files in /home/youruser/.local
Note also that if you install it in a virtualenv, when executing dhcpcanon
with sudo, won’t use the virtualenv. To keep the virtualenv run it with:

sudo /pathtovirtualenv/bin/dhcpcanon

Installation for developers

It is recommended to install dhcpcanon in a python virtual environment.

Check https://virtualenv.pypa.io/en/latest/installation.html. In Debian:

sudo apt install python3-virtualenv

Create a virtual environment:

mkdir ~/.virtualenvs
virtualenv ~/.virtualenvs/dhcpcanonenv -p /usr/bin/python3
source ~/.virtualenvs/dhcpcanonenv/bin/activate

	Get the sources::

	git clone https://github.com/juga0/dhcpcanon

Install it:

pip3 install -e .

Download dhcpcanon

You can download this project in either
zip [http://github.com/juga0/dhcpcanon/zipball/master()]
or tar [http://github.com/juga0/dhcpcanon/tarball/master] formats.

	You can also clone the project with Git by running:

	git clone git://github.com/juga0/dhcpcanon

Running dhcpcanon

If dhcpcanon has be installed with systemd, it can be started with:

sudo systemctl start dhcpcanon

After installing, it can also be run manually:

sudo dhcpcanon

There is no need to pass any argument, most of the arguments are only used when
dhcpcanon is called by other program (systemd or
gnome network manager) and mimic the dhclient arguments.

You can specify which network interface to use passing it as an argument.
Without specificying the network interface, it will use the active interface.

An useful argument when reporting bugs is -v.

An updated command line usage description can be obtained with:

dhcpcanon -h

Installation and running cases

system files

sbin/dhcpcanon-script
systemd/dhcpcanon.service
tmpfiles.d/dhcpcanon.conf
systemd/network/90-dhcpcanon.link
console_scripts -> /sbin/dhcpcanon

run cases

	standalone without systemd, using -sp sbin/dhcpcanon-script

	standalone without systemd, using resolvconf

	standalone without systemd, using resolvconf-admin

	launched with a wrapper, using -sp sbin/dhcpcanon-script

	launched with a wrapper, sing resolvconf

	launched with a wrapper, using resolvconf-admin

	launched as systemd service, using systemd-resolved

install from

	setup.py: dhcpcanon-scriptresolvconf, resolvconf-admin and/or systemd
need to be installed manually

	pip: dhcpcanon-scriptresolvconf, resolvconf-admin and/or systemd
need to be installed manually

	Makefile

	Debian

TODO

[X] create debian package

[X] create documentation

[X] calculate retransmission times for DISCOVER

[X] create tests

[] (WIP) integrate with Network Manager

[] listen in several interfaces

[X] create systemd service

[X] create init.d daemon: Won’t fix.

[X] limit privileges

[X] include MAC anonymization module: Debian package suggest it.

[X] create apparmor profile

[] implement IPv6

Contributing to dhcpcanon

We welcome contributions of any kind (ideas, code, tests, documentation, examples, …).

General contribution guidelines

	Any non-trivial change should contain tests.

	All the functions and methods should contain Sphinx docstrings which are used
to generate the API documentation.

Code style guide

	We follow PEP8 Python Style Guide [http://www.python.org/dev/peps/pep-0008/]

	Use 4 spaces for a tab

	Use 79 characters in a line

	Make sure edited file doesn’t contain any trailing whitespace

	You can verify that your modifications don’t break any rules by running the
flake8 script - e.g. flake8 dhcpcanon/edited_file.py or
tox -e style.
Second command will run flake8 on all the files in the repository.

And most importantly, follow the existing style in the file you are editing and
be consistent.

Docstring conventions

For documenting the API we we use Sphinx and reStructuredText syntax.

Contribution workflow

1. Open a new issue on our issue tracker

Go to our issue tracker [https://github.com/juga0/dhcpcanon/issues] and open a new issue for your changes there.

2. Fork our Github repository

Fork our Github git repository [https://github.com/juga0/dhcpcanon]. Your fork will be used to hold your changes.

3. Create a new branch for your changes

For example:

git checkout -b <features/my_feature>

4. Make your changes

Commit often and rebase master

5. Write tests for your changes and make sure all the tests pass

Make sure that all the code you have added or modified has appropriate test
coverage. Also make sure all the tests including the existing ones still pass
using tox

tox

6. Open a Pull request

You can then push your feature branch to your remote and open a pull request.

Reporting a Vulnerability

Please do not report security issues using the public Issue tracker [https://github.com/juga0/dhcpcanon/issues].
Send a description of it to juga at riseup dot net.
You are also encouraged to encrypt this email using GPG.
The key can be found in the public servers.

This docummentation is partly copied from libcloud contributing [https://libcloud.readthedocs.io/en/latest/development.html#contributing]

State of the Art

on DHCP clients, network managers and libraries in Debian/Ubuntu

ISC-DHCP

Reference ISC implementation
ISC License [https://www.isc.org/downloads/software-support-policy/isc-license/]

homepage [https://www.isc.org/downloads/dhcp/]
tar.gz [https://www.isc.org/downloads/file/dhcp-4-3-5/?version=tar-gz]

Debian DHCP clients

isc-dhcp-client

Debian default

debian [https://packages.debian.org/stretch/isc-dhcp-client]
debian source [https://anonscm.debian.org/cgit/pkg-dhcp/isc-dhcp.git/]

network-manager built-in

systemd-networkd

man 5 systemd.network => DHCP options

udhcpc

Busybox implementation

debian [https://packages.debian.org/stretch/udhcpc]

Debian network managers

Gnome Network Manager

Can use 3 DHCP clients:
- ISC DHCP client: package isc-dhpc-client, binarry dhclient
- systemd DHCP client
- built-in DHCP client

debian [https://packages.debian.org/stretch/network-manager]

wicd

debian [https://packages.debian.org/stretch/wicd]

Python DHCP libraries/tools

python-isc-dhcp-leases

Python module for reading dhcp leases files

debian [https://packages.debian.org/stretch/python-isc-dhcp-leases]

pydhcplib

Pure Python library.

GPL. Last updated XX. Commiters: 1.

pypi [https://pypi.python.org/pypi/pydhcplib/0.6.2],
repo [https://svnweb.tuxfamily.org/log.php?repname=pydhcplib%2Fpydhcplib&path=%2F&isdir=1&],
wiki [https://pydhcplib.tuxfamily.org/pmwiki]
debian [https://packages.debian.org/stretch/python-pydhcplib]

pydhcpd

DHCP command-line query and testing tool. Uses pydhcplib

GPL. Last updated: 2009

code [http://ostatic.com/pydhcpd/]

staticdhcpd

is an all-Python, RFC 2131-compliant DHCP server,
with support for most common DHCP extensions and
extensive site-specific customisation.

GPL. Last updated 12/03/2017. Commiters: +3

repo [http://code.google.com/p/staticdhcpd/]

dhquery

DHCP command line query and testing tool

code [http://code.google.com/p/dhquery/]
one github fork [https://github.com/lcy0321/dhquery] (updated 2016)

dhcpy6d

MAC address aware DHCPv6 server written in Python

Last updated 28/06/2017. Commiters: 2?

homepage [https://dhcpy6d.ifw-dresden.de/]
repo [https://github.com/HenriWahl/dhcpy6d]
doc [https://dhcpy6d.ifw-dresden.de/documentation/]
debian [https://packages.debian.org/stretch/dhcpy6d]

dhcpscapy

Simple DCHP client and server implemented with scapy

Last updated. 18/05/2014. Commiters: 1

repo [https://github.com/duy/dhcpscapy]

RFC7844 DHCPv4 restricted version summary, questions and dhcpcanon specification

This document is a more restrictive version summary of [RFC 7844 [https://tools.ietf.org/html/rfc7844.html]],
where the keywords (key words [RFC 2119 [https://tools.ietf.org/html/rfc2119.html]]) commented in
RFC7844 comments [https://rfc7844-comments.readthedocs.io/en/latest/rfc7844comm.html#rfc7844comm]
are actually replaced. Use diff to see specific differences between these
two documents.

See Summary of questions regarding the RFCs and the implementations for a summary of the questions stated here.

Note

	Extracts from the [RFC 7844 [https://tools.ietf.org/html/rfc7844.html]] marked as
literal blocks [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#literal-blocks].

	Replacements are marked as
parsed literal [http://docutils.sourceforge.net/docs/ref/rst/directives.html#parsed-literal]
with the keyword replaced in bold

Message types

Note

See Message types and options details in all layers for a summary of the messages implementation

DHCP*

[RFC 7844#section-3.1 [https://tools.ietf.org/html/rfc7844.html#section-3.1]]:

SHOULD randomize the ordering of options

If this can not be implemented
MUST order the options by option code number (lowest to highest).

DHCPDISCOVER

[RFC 7844#section-3. [https://tools.ietf.org/html/rfc7844.html#section-3.]]:

MUST contain the Message Type option,

MUST NOT contain the Client Identifier option,

MUST NOT contain the Parameter Request List option.

MUST NOT contain any other option.

DHCPREQUEST

[RFC 7844#section-3. [https://tools.ietf.org/html/rfc7844.html#section-3.]]:

MUST contain the Message Type option,

MUST NOT contain the Client Identifier option,

MUST NOT contain the Parameter Request List option.

MUST NOT contain any other option.

If in response to a DHCPOFFER,
MUST contain the corresponding Server Identifier option
MUST contain the Requested IP address option.

If the message is not in response to a DHCPOFFER (BOUND, RENEW),:

MUST NOT contain a Requested IP address option

DHCPDECLINE

[RFC 7844#section-3. [https://tools.ietf.org/html/rfc7844.html#section-3.]]:

MUST contain the Message Type option,
MUST contain the Server Identifier option,
MUST contain the Requested IP address option;

MUST NOT contain the Client Identifier option.

	is it always broadcast?

DHCPRELEASE

[RFC 7844#section-3. [https://tools.ietf.org/html/rfc7844.html#section-3.]]

To do not leak when the client leaves the network, this message type
MUST NOT be implemented.

In this case, servers might run out of leases, but that is something
that servers should fix decreasing the lease time.

DHCPINFORM

[RFC 7844#section-3. [https://tools.ietf.org/html/rfc7844.html#section-3.]]:

MUST contain the Message Type option,

MUST NOT contain the Client Identifier option,
MUST NOT contain the Parameter Request List option.

It MUST NOT contain any other option.

Message Options

Client IP address (ciaddr)

[RFC 7844#section-3.2 [https://tools.ietf.org/html/rfc7844.html#section-3.2]]:

MUST NOT include in the message a Client IP address that has been obtained
with a different link-layer address.

Requested IP Address Option (code 50)

[RFC 7844#section-3.3 [https://tools.ietf.org/html/rfc7844.html#section-3.3]]

MUST NOT use the Requested IP address option in DHCPDISCOVER messages.

MUST use the option when mandated (DHCPREQUEST)

If in INIT-REBOOT:

MUST perform a complete four-way handshake, starting with a DHCPDISCOVER

	This is like not having INIT-REBOOT state?:

If the client can ascertain that this is exactly the same network to which it was previously connected, and if the link-layer address did not change,
MAY issue a DHCPREQUEST to try to reclaim the current address.

	This is like INIT-REBOOT state?

	Is there a way to know if the link-layer address changed without leaking the link-layer?

Client Hardware Address Field

[RFC 7844#section-3.4 [https://tools.ietf.org/html/rfc7844.html#section-3.4]]:

If the hardware address is reset to a new randomized value,

the DHCP client MUST use the new randomized value in the DHCP messages

The client should be restarted when the hardware address changes and
use the current address instead of the permanent one.

Client Identifier Option (code 61)

[RFC 7844#section-3.5 [https://tools.ietf.org/html/rfc7844.html#section-3.5]]

MUST NOT have this option

In the case that it would have this option because otherwise the server
does not answer to the requests,:

DHCP
clients MUST use client identifiers based solely on the link-layer
address that will be used in the underlying connection.

Parameter Request List Option (PRL) (code 55)

[RFC 7844#section-3.6 [https://tools.ietf.org/html/rfc7844.html#section-3.6]]

MUST NOT have this option

Host Name option (code 12)

[RFC 7844#section-3.7 [https://tools.ietf.org/html/rfc7844.html#section-3.7]]

MUST NOT send the Host Name option.

Client FQDN Option (code 81)

[RFC 7844#section-3.8 [https://tools.ietf.org/html/rfc7844.html#section-3.8]]

MUST NOT include the Client FQDN option

UUID/GUID-Based Client Machine Identifier Option (code 97)

[RFC 7844#section-3.9 [https://tools.ietf.org/html/rfc7844.html#section-3.9]]:

Nodes visiting untrusted networks MUST NOT send or use the PXE options.

	And in the hypotetical case that nodes are visiting a “trusted” network,
must this option be included for the PXE to work properly?

User and Vendor Class DHCP Options

[RFC 7844#section-3.10 [https://tools.ietf.org/html/rfc7844.html#section-3.10]]

MUST NOT use the

Vendor-Specific Information option (code 43), the Vendor Class
Identifier option (code 60), the V-I Vendor Class option (code 124),
or the V-I Vendor-Specific Information option (code 125),

Operational considerations

[RFC 7844#section-5. [https://tools.ietf.org/html/rfc7844.html#section-5.]]

Implementers SHOULD provide a way for clients to control when the
anonymity profiles are used and when standard behavior is preferred.

dhcpcanon does not currently implement the standard behavior described in
[RFC 2131 [https://tools.ietf.org/html/rfc2131.html]] in order to keep the implementation simple and
because all existing implementations already implement it

Not specified in RFC7844, but in RFC2131

Probe the offered IP

[RFC 2131#section-2.2 [https://tools.ietf.org/html/rfc2131.html#section-2.2]]:

the allocating
server SHOULD probe the reused address before allocating the address,
e.g., with an ICMP echo request, and the client SHOULD probe the
newly received address, e.g., with ARP.

 The client SHOULD perform a
check on the suggested address to ensure that the address is not
already in use. For example, if the client is on a network that
supports ARP, the client may issue an ARP request for the suggested
request. When broadcasting an ARP request for the suggested address,
the client must fill in its own hardware address as the sender's
hardware address, and 0 as the sender's IP address, to avoid
confusing ARP caches in other hosts on the same subnet.>>

The client SHOULD broadcast an ARP
reply to announce the client's new IP address and clear any outdated
ARP cache entries in hosts on the client's subnet.

	does any implementation issue an ARP request to probe the offered address?

	is it issued after DHCPOFFER and before DHCPREQUEST,
or after DHCPACK and before passing to BOUND state?

Currently, there is not any probe

Retransmission delays

Sending DHCPDISCOVER [RFC 2131#section-4.4.1 [https://tools.ietf.org/html/rfc2131.html#section-4.4.1]]:

The client SHOULD wait a random time between one and ten seconds to
 desynchronize the use of DHCP at startup.

	is the DISCOVER retranmitted in the same way as the REQUEST?

[RFC 2131#section-3.1 [https://tools.ietf.org/html/rfc2131.html#section-3.1]]:

a client retransmitting as described in section 4.1 might retransmit the
DHCPREQUEST message four times, for a total delay of 60 seconds

[RFC 2131#section-4.4.5 [https://tools.ietf.org/html/rfc2131.html#section-4.4.5]]:

In both RENEWING and REBINDING states,
if the client receives no response to its DHCPREQUEST
message, the client SHOULD wait one-half of the remaining
time until T2 (in RENEWING state) and one-half of the
remaining lease time (in REBINDING state), down to a
minimum of 60 seconds, before retransmitting the
DHCPREQUEST message.

[RFC 2131#section-4.1 [https://tools.ietf.org/html/rfc2131.html#section-4.1]]:

For example, in a 10Mb/sec Ethernet
internetwork, the delay before the first retransmission SHOULD be 4
seconds randomized by the value of a uniform random number chosen
from the range -1 to +1

Clients with clocks that provide resolution
granularity of less than one second may choose a non-integer
randomization value.

The delay before the next retransmission SHOULD
be 8 seconds randomized by the value of a uniform number chosen from
the range -1 to +1.

The retransmission delay SHOULD be doubled with
subsequent retransmissions up to a maximum of 64 seconds.

	the delay for the next retransmission is calculated with respect to the type
of DHCP message or for the total of DHCP messages sent indendent of the type?

	without this algorithm being mandatory, it’d be possible to fingerprint the
the implementation depending on the delay of the retransmission

	how does other implementations do?

Selecting offer algorithm

[RFC 2131#section-4.2 [https://tools.ietf.org/html/rfc2131.html#section-4.2]]:

DHCP clients are free to use any strategy in selecting a DHCP server
among those from which the client receives a DHCPOFFER message.

client may choose to collect several DHCPOFFER
messages and select the "best" offer.

If the client receives no acceptable offers, the client
may choose to try another DHCPDISCOVER message.

	what is a “no acceptable offer”?

	which are the “strategies” to select OFFER implemented?

	different algorithms to select an OFFER could fingerprint the implementation

[RFC 2131#section-4.4.1 [https://tools.ietf.org/html/rfc2131.html#section-4.4.1]]:

The client collects DHCPOFFER messages over a period of time, selects
one DHCPOFFER message from the (possibly many) incoming DHCPOFFER
messages

The time
over which the client collects messages and the mechanism used to
select one DHCPOFFER are implementation dependent.

	Is it different the retransmission delays waiting for offer or ack/nak?,
in all states?

Currently, the first OFFER is chosen

Timers

[RFC 2131#section-4.4.5 [https://tools.ietf.org/html/rfc2131.html#section-4.4.5]]:

Times T1 and T2 are configurable by the server through options. T1
defaults to (0.5 * duration_of_lease). T2 defaults to (0.875 *
duration_of_lease). Times T1 and T2 SHOULD be chosen with some
random "fuzz" around a fixed value, to avoid synchronization of
client reacquisition.

T1 is then calculated as:

renewing_time = lease_time * 0.5 - time_elapsed_after_request
range_fuzz = lease_time * 0.875 - renewing_time
renewing_time += random.uniform(-(range_fuzz), +(range_fuzz))

And T2:

rebinding_time = lease_time * 0.875 - time_elapsed_after_request
range_fuzz = lease_time - rebinding_time
rebinding_time += random.uniform(-(range_fuzz), +(range_fuzz))

The range_fuzz is calculated in the same way that systemd implementation
does

	what’s the fixed value for the fuzz and how is it calculated?

	The “fuzz” range is not specified, the fuzz chosen could fingerprint the
implementation.

Leases

[RFC 7844#section-3.3 [https://tools.ietf.org/html/rfc7844.html#section-3.3]]:

There are scenarios in which a client connecting to a network
remembers a previously allocated address, i.e., when it is in the
INIT-REBOOT state. In that state, any client that is concerned with
privacy SHOULD perform a complete four-way handshake, starting with a
DHCPDISCOVER, to obtain a new address lease. If the client can
ascertain that this is exactly the same network to which it was
previously connected, and if the link-layer address did not change,
the client MAY issue a DHCPREQUEST to try to reclaim the current
address.

	is there a way to know if the network the client is connected to is the same to which it was connected previously?

For the sake of simplicity and privacy dhcpcanon does not currently
implement the INIT-REBOOT state nor reuse previously allocated addresses.

In future stages of dhcpcanon would be possible to reuse a previously
allocated address.
In order to do not leak identifying information when doing so,
it would be needed:

	to keep a database with previously allocated addresses associated to:

	the link network where the address was obtained
(without revealing the MAC being used).

	the MAC address that was used in that network

It is possible also that dhcpcanon will include a MAC randomization module
in the same distribution package or would require it in order to start.

Summary of questions regarding the RFCs and the implementations

This is a summary of the questions stated in RFC7844 DHCPv4 restricted version summary [https://dhcpcanon.readthedocs.io/en/latest/specification.html]

Message Options

Requested IP Address Option (code 50)

[RFC 7844#section-3.3 [https://tools.ietf.org/html/rfc7844.html#section-3.3]]

	Is there a way to know if the link-layer address changed without leaking the link-layer?

Not specified in RFC7844, but in RFC2131

Probe the offered IP

[RFC 2131#section-2.2 [https://tools.ietf.org/html/rfc2131.html#section-2.2]]

	does any implementation issue an ARP request to probe the offered address?

	is it issued after DHCPOFFER and before DHCPREQUEST,
or after DHCPACK and before passing to BOUND state?

Retransmission delays

Sending DHCPDISCOVER [RFC 2131#section-4.4.1 [https://tools.ietf.org/html/rfc2131.html#section-4.4.1]]

	is the DISCOVER retranmitted in the same way as the REQUEST

[RFC 2131#section-3.1 [https://tools.ietf.org/html/rfc2131.html#section-3.1]], [RFC 2131#section-4.4.5 [https://tools.ietf.org/html/rfc2131.html#section-4.4.5]], [RFC 2131#section-4.1 [https://tools.ietf.org/html/rfc2131.html#section-4.1]]

	the delay for the next retransmission is calculated with respect to the type
of DHCP message or for the total of DHCP messages sent indendent of the type?

	without this algorithm being mandatory, it’d be possible to fingerprint the
the implementation depending on the delay of the retransmission

	how does other implementations do?

Selecting offer algorithm

[RFC 2131#section-4.2 [https://tools.ietf.org/html/rfc2131.html#section-4.2]]

	what is a “no acceptable offer”?

	which are the “strategies” to select OFFER implemented?

	how many offers to wait for?

	different algorithms to select an OFFER could fingerprint the implementation

[RFC 2131#section-4.4.1 [https://tools.ietf.org/html/rfc2131.html#section-4.4.1]]

	Is it different the retransmission delays waiting for offer or ack/nak?,
in all states?

Timers

[RFC 2131#section-4.4.5 [https://tools.ietf.org/html/rfc2131.html#section-4.4.5]]

	what’s the fixed value for the fuzz and how is it calculated?

	The “fuzz” range is not specified, the fuzz chosen could fingerprint the
implementation.

Leases

[RFC 7844#section-3.3 [https://tools.ietf.org/html/rfc7844.html#section-3.3]]

	is there a way to know if the network the client is connected to is the same to which it was connected previously?

Not specified in any RFC

	is it needed to check that the ACK options match with the OFFER ones?

	is it needed to check that all options make sense?, which ones?

Message types and options details in all layers

DHCPDISCOVER

Always broadcast in AP:

Ehter: src=client_mac, dst="ff:ff:ff:ff:ff:ff"
IP: src="0.0.0.0", dst="255.255.255.255"
UDP: sport=68, dport=67
BOOTP: Client Hardware address (chaddr in scapy)
DHCP: Message Type option (message-type in scapy)

DHCPREQUEST

In SELECTING state: Broadcast in AP:

Ehter: src=client_mac, dst="ff:ff:ff:ff:ff:ff"
IP: src="0.0.0.0", dst="255.255.255.255"
UDP: sport=68, dport=67
BOOTP: Client Hardware address (chaddr in scapy)
DHCP: Message Type option (message-type in scapy)
DHCP: Server Identifier option (server_id in scapy, siaddr in server BOOTP offer)
DHCP: Requested IP option (requested_addr in scapy, yiaddr in server BOOTP offer)

In RENEWING state: Unicast to server id:

Ehter: src=client_mac, dst=server_mac
IP: src=client_ip, dst=server_ip
UDP: sport=68, dport=67
BOOTP: Client Hardware address (chaddr in scapy)
DHCP: Message Type option (message-type in scapy)
Client IP address (ciaddr=client_ip)?

In REBINDING state: broadcast:

Ehter: src=client_mac, dst="ff:ff:ff:ff:ff:ff"
IP: src="0.0.0.0", dst="255.255.255.255"
UDP: sport=68, dport=67
BOOTP: Client Hardware address (chaddr in scapy)
DHCP: Message Type option (message-type in scapy)
Client IP address (ciaddr=client_ip)?

DHCPDECLINE

Always broadcast?:

Ehter: src=client_mac, dst="ff:ff:ff:ff:ff:ff"
IP: src="0.0.0.0", dst="255.255.255.255"
UDP: sport=68, dport=67
BOOTP: Client Hardware address (chaddr in scapy)
DHCP: Message Type option (message-type in scapy)
DHCP: Server Identifier option (server_id in scapy, siaddr in server BOOTP offer)
DHCP: Requested IP option (requested_addr in scapy, yiaddr in server BOOTP offer)

DHCPRELEASE

Always unicast, is not being used:

Ehter: src=client_mac, dst=server_mac
IP: src=client_ip, dst=server_ip
UDP: sport=68, dport=67
BOOTP: Client Hardware address (chaddr in scapy)
DHCP: Message Type option (message-type in scapy)
DHCP: Server Identifier option (server_id in scapy, siaddr in server BOOTP offer)

DHCPINFORM

Always broadcast in Anonymity Profile, is not being used:

Ehter: src=client_mac, dst="ff:ff:ff:ff:ff:ff"
IP: src=client_ip, dst="255.255.255.255"
UDP: sport=68, dport=67
BOOTP: Client Hardware address (chaddr in scapy)
BOOTP: Client IP address (ciaddr=client_ip)
DHCP: Message Type option (message-type in scapy)

Minimising dhcpcanon privileges

Reasons why a DHCP client needs to run with root privileges:

	open sockets in privilege ports (68)

	open RAW sockets: to receive packets without having an IP set yet

	to set the IP offered

Note

dhcpcanon does not need privileges to set up the IP, as that is done
by a separated script, as dhclient does.

Possible solutions to minimise privileges and their associated problems:

	drop privileges after BOUND DHCP state (sockets binded):

	problem: if the client stays connected until the renewing/rebinding time,
privileges would be needed again and dropping privileges temporally it is
not recommended [].

	possible solutions: do not implement RENEWING/REBINDING states.

	problem: this would not be compliant with RFC 2131 nor 7844.

	pro: in “usual” networks, if the client stays enough time
connected to the network, the lease would expire it could just restart in the
INIT state.

Todo

which would be the associated problems to this solution?

	wrapper with privileges to set linux network capabilities to the client,
open sockets, then call the client inheriting the sockets:

	problem: same as 1.

Note

it’s not possible to set net capabilities directly to a python script,
they would need to be set to the python binary, but that would give the
capabilities to any python script.
Python binary could also be copied, set the capabilies, and that script call
the client, but would have the same problem as giving the capabilities to
the original python binary

	dhcpcanon could call a binary with privileges to create the sockets
every time it needs to do so.
It’s needed to change several parts of the current implementation.

	to have the process be granted just the capabilities it needs,
by the system-level process manager.

This is already implemented with systemd

	wrapper that does the same as in 4. without a system-level process
manager. See section “wrapper to inherit capabilities”

It could be solved with infinity0’s wrapper <https://github.com/infinity0/ambient-rs> running:

RUST_BACKTRACE=1 ./target/debug/ambient -c NET_RAW,NET_ADMIN,NET_BIND_SERVICE /usr/bin/python3 -m dhcpcanon.dhcpcanon -v

	wrapper with privileges to disable linux Remote Path (RP) filter,
open sockets, then call the client:

	problems:

	it still needs root to change the default RP settings

	it would only allow that the DHCP offers are received from other interfaces
[], but still RAW sockets are needed to receive packets in the
same interface that does not have an IP address yet

	same as 1.

Wrapper to inherit capabilities

With capsh, dhcpcanon could be launched as another user and
inherit only the required capabilities, in a similar way as
systemd.service does:

capsh --caps=cap_net_raw,cap_net_bind_service,cap_net_admin+epi --keep=1 -- -c "mkdir -p /run/dhcpcanon && cd /run/dhcpcanon && su -c 'exec /sbin/dhcpcanon enp0s25' -s /bin/sh dhcpcanon"

-s is needed cause dhcpcanon shell is /bin/false

However this does not have capabilities to create the socket.

To show the capabilities that are actually inherited:

capsh --keep=1 --secbits=0x1C --caps=cap_net_raw,cap_net_bind_service,cap_net_admin+epi -- -c "mkdir -p /run/dhcpcanon && cd /run/dhcpcanon && su -c '/sbin/capsh --print' -s /bin/sh dhcpcanon"

In man capsh --securebits is not documented, securebits.h
has some documentation, but it seems to be needed a newer version of
libcap as commented in this post [https://unix.stackexchange.com/questions/196483/how-do-i-use-capsh-i-am-trying-to-run-an-unprivileged-ping-with-minimal-capabi]

dhcpcanon integration with network managers

Integration with Gnome Network Manager

Gnome Network Manager [https://wiki.gnome.org/Projects/NetworkManager/]
has several components.

In Debian the service NetworkManager by default
calls dhclient [https://www.isc.org/]
which in turn calls nm-dhcp-helper.
Depending on the configuration, dhclient is called with the parameters:

/sbin/dhclient -d -q
-sf /usr/lib/NetworkManager/nm-dhcp-helper
-pf /var/run/dhclient-<interface>.pid
-lf /var/lib/NetworkManager/dhclient-<?>-<interface>.lease
-cf /var/lib/NetworkManager/dhclient-<interface>.conf
<interface>

Dclient calls nm-dhcp-helper via the -sf parameter,
which seems to communicate back with NetworkManager via D-Bus.

NetworkManager can be configured to use dhcpcd [https://roy.marples.name/git/dhcpcd.git]
or internal, as DHCP clients instead of dhclient.

FIXME: Configuring NetworkManager to use internal did not work
(why?). Is it using systemd DHCP client code? (libsystemd-network <https://github.com/NetworkManager/NetworkManager/tree/master/src/systemd/src/libsystemd-network`>`_
is included in ``NetworkManager source code, which is in systemd
code [https://github.com/systemd/systemd/tree/master/src/libsystemd-network]).

It does not work either with dhcpcd:
NetworkManager[12712]: <warn> [1493146345.7994] dhcp-init: DHCP client 'dhcpcd' not available

Environment variables that dhclient returns

When dhclient call the script, by default /sbin/dhcpcanon-script,
or when called by NetworkManager, nm-dhcp-helper, it pass environment
variables.

FIXME: Are these variables documented somewhere?.

In man dhclient-script there is the list of values that the variable reason can take:

The following reasons
 are currently defined: MEDIUM, PREINIT, BOUND, RENEW, REBIND, REBOOT,
 EXPIRE, FAIL, STOP, RELEASE, NBI and TIMEOUT.

But there are more variables.
By setting RUN=yes in /etc/dhcp/debug, these variables are found
in /tmp/dhclient-script.debug:

reason='PREINIT'
interface=

reason='REBOOT'
interface=
new_ip_address=
new_network_number=
new_subnet_mask=
new_broadcast_address=
new_routers=
new_domain_name=
new_domain_name_servers=

Looking at the code dhclient v4.3.5 [https://source.isc.org/cgi-bin/gitweb.cgi?p=dhcp.git;a=blob;f=client/dhclient.c;h=f7486c6a754f741fecb2a2999d78778ab79a5970;hb=846d0ecce7480257723c86c59f653687217181bc]
there seem to be more variables.

Environment variables that nm-dhcp-helper gets

TBD

??

dhcpcanon required modifications

If dhcpcanon accepts the same arguments as dhclient and calls
the script nm-dhcp-helper with the same environment
variables as dhclient, it should be integrated.

FIXME: however for some reason this generates D-Bus errors.

dhcpcanon could also implement the D-Bus input/output that
NetworkManager needs.

There’s a NetworkManager D-Bus API [https://developer.gnome.org/NetworkManager/unstable/spec.html]
specification.

There’s also a Python API, python-networkmanager [https://pythonhosted.org/python-networkmanager/],
so dhcpcanon could communicate directly with NetworkManager instead
communicating with nm-dhcp-helper.

nm notes

Debugging:

[logging]
level=DEBUG

It is not possible to set dhcp-send-hostname
(Bug 768076 - No way to set dhcp-send-hostname globally [https://bugzilla.gnome.org/show_bug.cgi?id=768076#c5])
globally.

To modify dhcp-send-hostname per interface:

nmcli connection modify “Wired connection” ipv4.dhcp-send-hostname no
nmcli connection show “Wired connection”

	Or the files:

	/etc/NetworkManager/system-connections/Wiredconnection

There is currently no way that when a new device is create it defaults to a configuration.

Integration with wicd

TBD

wicd [https://wicd.sourceforge.net/]

wicd documentation [https://bazaar.launchpad.net/~wicd-devel/wicd/experimental/view/head:/README]

dhcpcanon Python API Reference

	dhcpcanon.dhcpcapfsm

	

	dhcpcanon.dhcpcap

	

	dhcpcanon.dhcpcaplease

	

	dhcpcanon.clientscript

	

	dhcpcanon.timers

	Timers for the DHCP client implementation of the Anonymity Profile ([RFC 7844 [https://tools.ietf.org/html/rfc7844.html]]).

	dhcpcanon.dhcpcaputils

	

	dhcpcanon.constants

	Constants for the DHCP client implementation of the Anonymity Profile ([RFC 7844 [https://tools.ietf.org/html/rfc7844.html]]).

	dhcpcanon.conflog

	Logging configuration.

dhcpcapfsm module

dhcpcap module

dhcpcaplease module

clientscript module

timers module

Timers for the DHCP client implementation of the Anonymity Profile
([RFC 7844 [https://tools.ietf.org/html/rfc7844.html]]).

	
dhcpcanon.timers.future_dt_str(dt, td)

	.

	
dhcpcanon.timers.gen_delay_selecting()

	Generate the delay in seconds in which the DISCOVER will be sent.

[RFC 2131#section-4.4.1 [https://tools.ietf.org/html/rfc2131.html#section-4.4.1]]:

The client SHOULD wait a random time between one and ten seconds to
desynchronize the use of DHCP at startup.

	
dhcpcanon.timers.gen_rebinding_time(lease_time, elapsed=0)

	.

	
dhcpcanon.timers.gen_renewing_time(lease_time, elapsed=0)

	Generate RENEWING time.

[RFC 2131#section-4.4.5 [https://tools.ietf.org/html/rfc2131.html#section-4.4.5]]:

T1
defaults to (0.5 * duration_of_lease). T2 defaults to (0.875 *
duration_of_lease). Times T1 and T2 SHOULD be chosen with some
random "fuzz" around a fixed value, to avoid synchronization of
client reacquisition.

	
dhcpcanon.timers.gen_timeout_request_rebind(lease)

	.

	
dhcpcanon.timers.gen_timeout_request_renew(lease)

	Generate time in seconds to retransmit DHCPREQUEST.

[RFC 2131#section-4..4.5 [https://tools.ietf.org/html/rfc2131.html#section-4..4.5]]:

In both RENEWING and REBINDING states,
if the client receives no response to its DHCPREQUEST
message, the client SHOULD wait one-half of the remaining
time until T2 (in RENEWING state) and one-half of the
remaining lease time (in REBINDING state), down to a
minimum of 60 seconds, before retransmitting the
DHCPREQUEST message.

	
dhcpcanon.timers.gen_timeout_resend(attempts)

	Generate the time in seconds in which DHCPDISCOVER wil be retransmited.

[RFC 2131#section-3.1 [https://tools.ietf.org/html/rfc2131.html#section-3.1]]:

might retransmit the
DHCPREQUEST message four times, for a total delay of 60 seconds

[RFC 2131#section-4.1 [https://tools.ietf.org/html/rfc2131.html#section-4.1]]:

For example, in a 10Mb/sec Ethernet
internetwork, the delay before the first retransmission SHOULD be 4
seconds randomized by the value of a uniform random number chosen
from the range -1 to +1. Clients with clocks that provide resolution
granularity of less than one second may choose a non-integer
randomization value. The delay before the next retransmission SHOULD
be 8 seconds randomized by the value of a uniform number chosen from
the range -1 to +1. The retransmission delay SHOULD be doubled with
subsequent retransmissions up to a maximum of 64 seconds.

	
dhcpcanon.timers.nowutc()

	.

dhcpcaputils module

constants module

Constants for the DHCP client implementation of the Anonymity Profile
([RFC 7844 [https://tools.ietf.org/html/rfc7844.html]]).

	
dhcpcanon.constants.PRL = b'\x01\x03\x06\x0f\x1f!+,./y\xf9\xfc'

	SD_DHCP_OPTION_SUBNET_MASK = 1
SD_DHCP_OPTION_ROUTER = 3
SD_DHCP_OPTION_DOMAIN_NAME_SERVER = 6
SD_DHCP_OPTION_DOMAIN_NAME = 15
SD_DHCP_OPTION_ROUTER_DISCOVER = 31
SD_DHCP_OPTION_STATIC_ROUTE = 33
SD_DHCP_OPTION_VENDOR_SPECIFIC = 43
SD_DHCP_OPTION_NETBIOS_NAMESERVER = 44
SD_DHCP_OPTION_NETBIOS_NODETYPE = 46
SD_DHCP_OPTION_NETBIOS_SCOPE = 47
SD_DHCP_OPTION_CLASSLESS_STATIC_ROUTE = 121
SD_DHCP_OPTION_PRIVATE_CLASSLESS_STATIC_ROUTE = 249
SD_DHCP_OPTION_PRIVATE_PROXY_AUTODISCOVERY = 252

conflog module

Logging configuration.

dhcpcanon diagrams

Finite State Machine diagram

[image: _images/dhcpcapfsm.svg]

Classes diagram

[image: _images/classes_dhcpcanon.svg]

Packages diagram

[image: _images/packages_dhcpcanon.svg]

Calls diagram

[image: _images/calls_dhcpcanon.svg]

Organigram

This organigram does not reflect the current status of dhcpcanon,
but as it should be changed

[image: _images/organigram_dhcpcanon.svg]

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dhcpcanon	

 	
 	
 dhcpcanon.conflog	

 	
 	
 dhcpcanon.constants	

 	
 	
 dhcpcanon.timers	

Index

 D
 | F
 | G
 | N
 | P
 | R

D

 	
 	dhcpcanon.conflog (module)

 	
 	dhcpcanon.constants (module)

 	dhcpcanon.timers (module)

F

 	
 	future_dt_str() (in module dhcpcanon.timers)

G

 	
 	gen_delay_selecting() (in module dhcpcanon.timers)

 	gen_rebinding_time() (in module dhcpcanon.timers)

 	gen_renewing_time() (in module dhcpcanon.timers)

 	
 	gen_timeout_request_rebind() (in module dhcpcanon.timers)

 	gen_timeout_request_renew() (in module dhcpcanon.timers)

 	gen_timeout_resend() (in module dhcpcanon.timers)

N

 	
 	nowutc() (in module dhcpcanon.timers)

P

 	
 	PRL (in module dhcpcanon.constants)

R

 	
 	
 RFC

 	RFC 2119

 	RFC 2131

 	RFC 2131#section-2.2, [1]

 	RFC 2131#section-3.1, [1], [2]

 	RFC 2131#section-4..4.5

 	RFC 2131#section-4.1, [1], [2]

 	RFC 2131#section-4.2, [1]

 	RFC 2131#section-4.4.1, [1], [2], [3], [4]

 	RFC 2131#section-4.4.5, [1], [2], [3], [4]

 	RFC 7844, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 	RFC 7844#section-3., [1], [2], [3], [4]

 	RFC 7844#section-3.1

 	RFC 7844#section-3.10

 	RFC 7844#section-3.2

 	RFC 7844#section-3.3, [1], [2], [3]

 	RFC 7844#section-3.4

 	RFC 7844#section-3.5

 	RFC 7844#section-3.6

 	RFC 7844#section-3.7

 	RFC 7844#section-3.8

 	RFC 7844#section-3.9

 	RFC 7844#section-5.

dhcpcanon - DHCP anonymity profile

[image: PyPI] [https://pypi.python.org/pypi/dhcpcanon] [image: Build Status] [https://www.travis-ci.org/juga0/dhcpcanon] [image: Coverage Status] [https://coveralls.io/github/juga0/dhcpcanon?branch=master] [image: Documentation Status] [http://dhcpcanon.readthedocs.io/en/latest/?badge=latest] [image: CII Best Practices] [https://bestpractices.coreinfrastructure.org/projects/1020]

DHCP client disclosing less identifying information.

Python implementation of the DHCP Anonymity Profile
(RFC7844 [https://tools.ietf.org/html/rfc7844]) designed for users
that wish to remain anonymous to the visited network minimizing
disclosure of identifying information.

Technologies

This implementation uses the Python Scapy
Automata [https://www.secdev.org/projects/scapy/doc/advanced_usage.html#automata]

What is the Anonymity Profile?

As the RFC7844 stats:

Some DHCP options carry unique identifiers. These identifiers can
enable device tracking even if the device administrator takes care
of randomizing other potential identifications like link-layer
addresses or IPv6 addresses. The anonymity profiles are designed for
clients that wish to remain anonymous to the visited network. The
profiles provide guidelines on the composition of DHCP or DHCPv6
messages, designed to minimize disclosure of identifying
information.

What is DHCP?

From Wikipedia [https://en.wikipedia.org/wiki/DHCP]:

The Dynamic Host Configuration Protocol (DHCP) is a
standardized network
protocol [https://en.wikipedia.org/wiki/Network_protocol] used on
Internet
Protocol [https://en.wikipedia.org/wiki/Internet_Protocol] (IP)
networks. The DHCP is controlled by a DHCP server that dynamically
distributes network configuration parameters, such as IP
addresses [https://en.wikipedia.org/wiki/IP_address], for
interfaces and services. A
router [https://en.wikipedia.org/wiki/Router_%28computing%29] or
a residential
gateway [https://en.wikipedia.org/wiki/Residential_gateway] can
be enabled to act as a DHCP server. A DHCP server enables computers
to request IP addresses and networking parameters automatically,
reducing the need for a network
administrator [https://en.wikipedia.org/wiki/Network_administrator]
or a user to configure these settings manually. In the absence of a
DHCP server, each computer or other device (eg., a printer) on the
network needs to be statically (ie., manually) assigned to an IP
address.

Documentation

A more extensive online documentation is available in Read the
docs [https://dhcpcanon.readthedocs.io/]. The documentation source is
in this repository.

Visit DHCPAP [https://github.com/dhcpap] for an overview of all the
repositories related to the RFC7844 implementation work.

Installation

See Installation and
Running

Download

You can download this project in either
zip [http://github.com/juga0/dhcpcanon/zipball/master()] or
tar [http://github.com/juga0/dhcpcanon/tarball/master] formats.

You can also clone the project with Git by running:

git clone https://github.com/juga0/dhcpcanon

Bugs and features

If you wish to signal a bug or report a feature request, please fill-in
an issue on the dhcpcanon issue
tracker [https://github.com/juga0/dhcpcanon/issues].

Current status

WIP, still not recommended for end users. Testers welcomed.

See TODO

License

dhcpcanon is copyright 2016-2018 by juga (juga at riseup dot net)
and is licensed by the terms of the MIT license.

Acknowledgments

To all the persons that have given suggestions and comments about this
implementation, the authors of the RFC
7844 [https://tools.ietf.org/html/rfc7844], the Prototype Fund
Project [https://prototypefund.de] of the Open Knowledge Foundation
Germany [https://okfn.de/] and the Federal Ministry of Education and
Research [https://www.bmbf.de/] who partially funds this work.

dhcpcanon - DHCP anonymity profile

[image: PyPI] [https://pypi.python.org/pypi/dhcpcanon] [image: Build Status] [https://www.travis-ci.org/juga0/dhcpcanon] [image: Coverage Status] [https://coveralls.io/github/juga0/dhcpcanon?branch=master] [image: Documentation Status] [http://dhcpcanon.readthedocs.io/en/latest/?badge=latest] [image: CII Best Practices] [https://bestpractices.coreinfrastructure.org/projects/1020]

DHCP client disclosing less identifying information.

Python implementation of the DHCP Anonymity Profiles RFC 7844 [https://tools.ietf.org/html/rfc7844.html]
designed for users that wish to remain anonymous to the visited network
minimizing disclosure of identifying information.

Technologies

This implementation uses the Python
Scapy Automata [https://www.secdev.org/projects/scapy/doc/advanced_usage.html#automata]

What is the Anonymity Profile?

As the [RFC 7844 [https://tools.ietf.org/html/rfc7844.html]] stats:

Some DHCP options carry unique identifiers. These identifiers can
enable device tracking even if the device administrator takes care of
randomizing other potential identifications like link-layer addresses
or IPv6 addresses. The anonymity profiles are designed for clients
that wish to remain anonymous to the visited network. The profiles
provide guidelines on the composition of DHCP or DHCPv6 messages,
designed to minimize disclosure of identifying information.

What is DHCP?

	From Wikipedia [https://en.wikipedia.org/wiki/DHCP]:

	The Dynamic Host Configuration Protocol (DHCP) is a standardized
network protocol [https://en.wikipedia.org/wiki/Network_protocol]
used on Internet
Protocol [https://en.wikipedia.org/wiki/Internet_Protocol] (IP)
networks. The DHCP is controlled by a DHCP server that dynamically
distributes network configuration parameters, such as IP
addresses [https://en.wikipedia.org/wiki/IP_address], for interfaces
and services. A
router [https://en.wikipedia.org/wiki/Router_%28computing%29] or a
residential
gateway [https://en.wikipedia.org/wiki/Residential_gateway] can be
enabled to act as a DHCP server. A DHCP server enables computers to
request IP addresses and networking parameters automatically, reducing
the need for a network
administrator [https://en.wikipedia.org/wiki/Network_administrator]
or a user to configure these settings manually. In the absence of a DHCP
server, each computer or other device (eg., a printer) on the network
needs to be statically (ie., manually) assigned to an IP address.

Installation

See Install dhcpcanon

Download

See Download dhcpcanon

Bugs and features

If you wish to signal a bug or report a feature request, please fill-in
an issue on the dhcpcanon issue tracker [https://github.com/juga0/dhcpcanon/issues].

Current status

Minimal version implemented, still to be improved.

See TODO

Documentation for developers

Contributing to dhcpcanon

State of the Art

RFC7844 DHCPv4 restricted version summary, questions and dhcpcanon specification

Summary of questions regarding the RFCs and the implementations

Message types and options details in all layers

Installation and running cases

Minimising dhcpcanon privileges

dhcpcanon integration with network managers

dhcpcanon Python API Reference

dhcpcanon diagrams

Recommended documentation not included in this repository:

Related RFCs

RFC7844 comments and summary

Main Website [http://dhcpap.github.io]

License

dhcpcanon is copyright 2016, 2017 by juga <juga at riseup dot net>,
and is licensed under the terms of the MIT license.

Acknowledgments

To all the persons that have given suggestions and comments about this
implementation, the authors of the RFC 7844 [https://tools.ietf.org/html/rfc7844.html],
the Prototype Fund Project [https://prototypefund.de] of the
Open Knowledge Foundation Germany [https://okfn.de/] and the
Federal Ministry of Education and Research [https://www.bmbf.de/]
for funding partially this project.

 _static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/dhcpcanon_logo.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 dhcpcanon - DHCP anonymity profile

 		
 Install dhcpcanon

 		
 Installation from source code in Debian/Ubuntu

 		
 for advanced users

 		
 Installation with pip

 		
 Installation for developers

 		
 Download dhcpcanon

 		
 Running dhcpcanon

 		
 Installation and running cases

 		
 system files

 		
 run cases

 		
 install from

 		
 TODO

 		
 Contributing to dhcpcanon

 		
 General contribution guidelines

 		
 Code style guide

 		
 Docstring conventions

 		
 Contribution workflow

 		
 1. Open a new issue on our issue tracker

 		
 2. Fork our Github repository

 		
 3. Create a new branch for your changes

 		
 4. Make your changes

 		
 5. Write tests for your changes and make sure all the tests pass

 		
 6. Open a Pull request

 		
 Reporting a Vulnerability

 		
 State of the Art

 		
 ISC-DHCP

 		
 Debian DHCP clients

 		
 isc-dhcp-client

 		
 network-manager built-in

 		
 systemd-networkd

 		
 udhcpc

 		
 Debian network managers

 		
 Gnome Network Manager

 		
 wicd

 		
 Python DHCP libraries/tools

 		
 python-isc-dhcp-leases

 		
 pydhcplib

 		
 pydhcpd

 		
 staticdhcpd

 		
 dhquery

 		
 dhcpy6d

 		
 dhcpscapy

 		
 RFC7844 DHCPv4 restricted version summary, questions and dhcpcanon specification

 		
 Message types

 		
 DHCP*

 		
 DHCPDISCOVER

 		
 DHCPREQUEST

 		
 DHCPDECLINE

 		
 DHCPRELEASE

 		
 DHCPINFORM

 		
 Message Options

 		
 Client IP address (ciaddr)

 		
 Requested IP Address Option (code 50)

 		
 Client Hardware Address Field

 		
 Client Identifier Option (code 61)

 		
 Parameter Request List Option (PRL) (code 55)

 		
 Host Name option (code 12)

 		
 Client FQDN Option (code 81)

 		
 UUID/GUID-Based Client Machine Identifier Option (code 97)

 		
 User and Vendor Class DHCP Options

 		
 Operational considerations

 		
 Not specified in RFC7844, but in RFC2131

 		
 Probe the offered IP

 		
 Retransmission delays

 		
 Selecting offer algorithm

 		
 Timers

 		
 Leases

 		
 Summary of questions regarding the RFCs and the implementations

 		
 Message Options

 		
 Requested IP Address Option (code 50)

 		
 Not specified in RFC7844, but in RFC2131

 		
 Probe the offered IP

 		
 Retransmission delays

 		
 Selecting offer algorithm

 		
 Timers

 		
 Leases

 		
 Not specified in any RFC

 		
 Message types and options details in all layers

 		
 DHCPDISCOVER

 		
 DHCPREQUEST

 		
 DHCPDECLINE

 		
 DHCPRELEASE

 		
 DHCPINFORM

 		
 Minimising dhcpcanon privileges

 		
 Wrapper to inherit capabilities

 		
 dhcpcanon integration with network managers

 		
 Integration with Gnome Network Manager

 		
 Environment variables that dhclient returns

 		
 Environment variables that nm-dhcp-helper gets

 		
 dhcpcanon required modifications

 		
 nm notes

 		
 Integration with wicd

 		
 dhcpcanon Python API Reference

 		
 dhcpcapfsm module

 		
 dhcpcap module

 		
 dhcpcaplease module

 		
 clientscript module

 		
 timers module

 		
 dhcpcaputils module

 		
 constants module

 		
 conflog module

 		
 dhcpcanon diagrams

 		
 Finite State Machine diagram

 		
 Classes diagram

 		
 Packages diagram

 		
 Calls diagram

 		
 Organigram

_static/ajax-loader.gif

